Research Projects

The project «Sounds of Matter» focuses specifically on 7 research projects currently being carried out at the University of Vienna, which are the following:

Ferroic Materials Metallic Glass 2D Materials Polymers Nucleation Nano Carbon-Metal Hybrids Diffusion

Univ.-Prof. Mag. Dr. Thomas Pichler:

[P 27769Elektron/Spin-korrelationen in Nanokohlenstoffmetallhybriden

               → Nano Carbon-Metal Hybrids

 

Univ.-Prof. Mag. Dr. Christoph Dellago:

[P 24681] Nukleation und Wachstum in kleinen Systemen

               → Nucleation

 

Priv. Doz. Dr. Markus A. Hartmann:

[P 27882] Einfluss der Koordination der Querverbindungen in Polymer Netzwerken auf die Mechanik → Polymers

 

Univ.-Prof. Dipl.-Phys. Dr. Jannik C. Meyer:

[P 25721] Struktur und Eigenschaften in modifizierten 2D Materialien

               → 2D Materials

 

ao. Univ.-Prof. Mag. Dr. Christian Rentenberger:

[I 1309] Strukturelle Inhomogenitäten metallischer Massivgläser

             → Metallic Glass

 

ao. Univ.-Prof. Mag. Dr. Wilfried Schranz:

[P 28672] Struktur und Dynamik ferroischer Grenzflächen

               → Ferroic Materials

 

ao. Univ.-Prof. Mag. Dr. Bogdan Sepiol:

[P 28232] Diffusion in Gläsern untersucht mittels Röntgenkorrelationsspektroskopie

               → Diffusion

What is 'material Science'?

Generally, the term Materials Science is the use of physics to describe the physical properties of materials. It is a synthesis of physical sciences such as chemistrysolid mechanics, solid state physics, and materials science. The field is inherently interdisciplinary, and the materials scientists/engineers must be aware and make use of the methods of the physicist, chemist and engineer. The field thus maintains close relationships with these fields. Also, many physicists, chemists and engineers also find themselves working in materials science.

The overlap between physics and materials science has led to the offshoot field of materials physics, which is concerned with the physical properties of materials. The approach is generally more macroscopic and applied than in condensed matter physics